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Abstract 

 
In this paper we review work at the University of 
Reading over a number of projects exploring the use 
of multimedia and networking technology to create 
online-robot laboratory facilities that can be shared 
across the Internet. The projects have progressed 
from an emphasis on the evaluation of technology to 
a closer integration and exploration of online robot 
laboratories within educational programmes. The 
paper emphasises recent work that highlights the role 
of multimedia technology in the assessment of student 
work, in contrast to its early role in the development 
of the online robot facilities. Students have found the 
online robot scenarios created for assessed project 
work both challenging and rewarding. The 
assessment of the student work, however, requires the 
implementation of alternative strategies that both 
allow the students to demonstrate the functionality of 
their implementations and reflect the considerable 
effort that many students put into their projects.  
 
Keywords: Online robots, Internet robotics, 
education, WWW. 
 
 
 
1 INTRODUCTION 
 
Multimedia and networking technology has played an 
important role in the development and application of 
robotics technology. The impact has been most 
observable in providing the opportunity to create 
online robot demonstrations [1-4]. These systems 
have highlighted the scope for robotics education via 
the Internet by providing opportunities for students 
and general members of the public to control real 
robots in a range of motivational scenarios. Internet 
robot stores and educational robot manufacturers 
have also seen the benefits of providing similar 
services to illustrate their products. Some projects 
have also explored the use of these environments in 
student projects [5,6]. The PumaPaint project, for 
example, allowed students to develop skills in 
computer interface development for remote control 
[6]. However, considerable work is still required to 
establish a framework and a rich set of educational 
facilities that can support the persistent use of these 
environments in education. 
 

In this paper we describe a set of projects developed 
at the University of Reading aimed a exploiting 
networking and multimedia technology to provide 
laboratory facilities that can be shared across the 
Internet. The early motivation for the first project, 
NETROLAB, was the then recent development of 
high bandwidth networks [5]. The project was 
motivated internally by the desire to give many more 
students access to a mobile robot system. Supervised 
access was costly of staff resources. The desire for a 
more efficient provision of limited laboratory 
resources also reflected the more widespread need 
otherwise to maintain industrial level laboratory 
resources to support robotics education, a cost that 
prohibited many universities providing such facilities 
to support their teaching programmes. 
 
The more recent development of the goals of the 
NETROLAB projects is the smaller scale TORUS 
project [7]. The focus in TORUS has shifted to using 
simple toys to create small scale, but nevertheless 
challenging, robot scenarios that will motivate a 
range of educational topics in robotics and artificial 
intelligence. A stronger focus is also placed on 
integrating these scenarios into educational 
programmes as assessed student projects. One such 
project, described in this paper, develops the theme of 
a three-player game scenario based on construction-
site toys, the TORUS Construction Site (TCS) 
scenario [9]. This project has in turn motivated 
further issues in the need for multimedia support for 
both conducting the project and assessing the 
resulting student work. 
 
The MVIDEO software system is a more recent 
project aimed at providing image services for 
students who are creating simple stop-look-act 
control systems spanning a remote online robot 
system (the TCS arena) and the student’s local 
workstation. The application of the MVIDEO system 
to a recent student project has highlighted its benefits 
both to the students when implementing their projects 
and for the teachers when monitoring the online 
environment and its use by the students. This same 
application has also highlighted the need to develop 
better strategies for assessing student work that 
involves online robot systems. A more empirical 
reporting of the results would help reduce the 
overheads of assessment and better reflect the 
considerable effort that many students put into the 
completion of their projects. 
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The remainder of the paper is organised as follows. 
The following section summarises the main 
components and conclusions of the NETROLAB 
project. Section 3 describes the TORUS project, 
focusing on the TCS scenario. Section  4 describes a 
student project developed from the TCS scenario that 
focused on providing some level of automated control 
for a toy digger. Section 5 describes the MVIDEO 
project, whose aim was to provide image support for 
both remote viewing and image processing functions. 
Its incorporation in the most recent, the second, run 
of the digger project is described. Section 6 discusses 
the assessment of student projects that use online 
robot systems. It proposes a set of deliverables that 
students should provide for the assessment of this 
work. This includes the developoment of a permanent 
record of experimental results. In the digger project 
this is best provided as an animated sequence of 
images that illustrate the most successful task runs. 
The provision of such a deliverable can go a long way 
to easing the process of assessing the student work 
and providing a better reflection of the effort the 
students put into the project. Finally, section 7 
provides a summary and conclusions. 
 
 
2. NETROLAB 
 
The NETROLAB project was motivated by practical 
and economic problems in the delivery of robotics 
education to a large body of students. Specifically, 
creating a multiple-station robotics laboratory 
requires significant funding which cannot be justified 
in the vast majority of educational settings. If at least 
one such laboratory could be established, and access 
to it could be provided via the Internet, many more 
students could get access to robotics systems. 
NEROLAB, in short, aimed to investigate how the 
combined power of high bandwidth networks and 
multimedia workstation technology could be 
successfully harnessed to bring otherwise 
inaccessible resources to a wider audience than 
hitherto possible. 
 

 
Figure 1. Netrolab established a set of robotics 

devices as networked resources 
 
The practical goal of NETROLAB was the creation 
of a shared robotics laboratory on the Internet by 

“networking” a set of physical robotics resources, 
including vision and sonar sensing modules, a 
manipulator arm, and a mobile robot, housed within 
an environment located at the University of Reading. 
Five basic requirements were established for the 
provision of such a laboratory service, namely the 
coverage of the subject of robotics and the support for 
individual student experiments, for group-based 
experiments, for software development activities and 
finally for the concurrent use of the experiment 
facilities by multiple students. The conventional 
model of a laboratory environment comprises a set of 
resources which are configured as needed to support a 
diverse range of experiments (Figure 1). A similar 
model was adopted for NETROLAB. The notion was 
that experimental modules could be created by 
recruiting a subset of the NETROLAB resources to 
satisfy the practical needs of a particular experiment 
(Figure 2). In order to access these experiments 
across the Internet the following additional 
requirements were established: 
 
1. The physical robotic devices require hardware 

and software interfaces which are customised to 
support network-based access. 

2. The resources must provide a set of services that 
can be used to configure a wide range of 
experiments. 

3. Primitive and complex resources, the latter 
composed from primitive resources, need to 
communicate with each other and with the user, 
across the network. 

 

 
Figure 2. Multiple camera resources (video streams 

and pan-tilt & zoom-focus controls) could be 
configured to create a viewing palette for remote 

control of a manipulator. 
 
In order to support these requirements a resource-
based client-server model was implemented 
employing object-oriented techniques and 
implemented in C++. In this model each resource was 
implemented as a server providing a set of services to 
client applications. For example, each joint of a robot 
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manipulator would be treated as a separate resource. 
These could be recruited along with a video source 
and a simple client interface for remote control of a 
manipulator could be configured. A more complex 
configuration might employ multiple cameras. The 
controls for the cameras are also resources that could 
be configured to create a camera control application 
that could run on the same workstation or on a 
separate workstation, allowing students to perform 
advanced teleoperation experiments. 
 
NETROLAB demonstrated the potential of 
technology, specifically advanced networking and 
multimedia technology, to create new types of 
educational resources. Remote viewing and control in 
various forms were demonstrated, reflecting early 
Web-based online robot demonstrations and inteface-
based programming projects [2]. However, the full 
benefits of these types of facilities in extended 
educational programmes has still to be achieved. One 
of the important requirements is to develop 
technology and tools to reflect the specific 
requirements of projects that involve the creation of 
robot control architectures. 
 
 
3. TORUS 
 
TORUS (Toys Operated Remotely for Understanding 
Science) is a project aimed at exploiting toys to create 
interesting and challenging robotics demonstrations 
and problem scenarios for students. The main 
advantage of using toys rather than industrial-level 
robot systems is the low cost of purchase and the 
minimal maintenance and safety requirements. There 
are also many robot-like toys available, allowing 
students and other to replicate on-line scenarios, and 
to develop unique scenarios of their own. The 
TORUS Construction Site (TCS) scenario illustrates 
the general approach incorporates three toys remotely 
accessible via the Internet within the context of a 
three player game (Figures 3-5). 
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Digger receiving area
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Figure 3. Diagrammatic overview of the TORUS 
Construction Site Arena 

 
The TCS environment comprises an arena split up 
into three sections. Each section is  associated with a 
different toy device, namely a tower-crane, a digger 

and a bulldozer respectively. The three sections of the 
arena form a circuit and the task is to move a ball 
around the circuit in the sequence bulldozer-
tower_crane-digger. Each player in the game has 
control of one of the devices, which in turn implies 
that they are taking charge of the corresponding 
section of the circuit. The players have access to a 
number of camera views. An arena camera located off 
the arena provides a view of the whole arena. A small 
camera mounted on the digger provides a view ahead 
of the digger. A third camera view is provided by a 
small camera mounted on the tower-crane just below 
the cab so that it looks downwards and moves with 
the turret. Each player can switch between any one of 
these views during the game. 
 

 
Figure 4. The TCS administration page. Used to 

control access, set game parameters and to monitor 
the arena through the tower_crane and digger 

cameras. 
 
The software environment of the TCS comprises 
three basic components, namely the device servers, 
the video server and the game server. All three 
servers are implemented in the programming 
language C running on Linux boxes that support the 
corresponding device interface. Management of the 
TCS game is provided by a password protected web 
page based on a Perl cgi script. The administration 
web page (Figure 4) allows administration and 
observation of the game as it progresses. The game 
server, the heart of the implementation, comprises a 
number of web pages allowing users to enter and play 
the game. A control page provides users with a 
simulated joystick interface, a video window to 
display the remote arena with a choice of three 
camera views, a message window for users to 
communicate with each other, a command window 
that displays the commands sent to the device and the 
reply, and a countdown timer which is nominally set 
to 5 minutes. The tower-crane control page is 
illustrated in Figure 5. 
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Figure 5. The tower_crane control page 

 
The educational value of the TCS is in demonstrating 
the concept of teleoperation through a practical 
remote control scenario where optimal task 
completion rate is the main performance objective. 
The game demonstrates, in the first instance, the 
concept of remote control. In the second instance it 
demonstrates the user interfaces required for control 
of the remote devices. In the third instance it 
demonstrates the importance of video feedback as a 
method of "seeing" the remote workspace. It 
illustrates the importance of multiple camera 
viewpoints and indeed the benefits of mobile camera 
views over fixed cameras. The scenario chosen and 
the placement of the cameras on the tower crane and 
digger, for example, help illustrate the viewing 
options available to human operators and the 
restrictions thereof. The latter help to motivate the 
need for additional support for these operators. The 
tower-crane illustrates this particularly well. 
 
The TCS also illustrates various forms of robotic 
manipulation including grabbing, carrying and 
pushing. Indeed, some ingenuity is required to avoid 
the task (i.e. the ball) going astray; for example, if the 
ball gets lodged against the sides of the arena or in a 
corner. The TCS also calls on the players to think 
about the task that is to be performed and the 
limitations that are placed on them by remote 
operations because of the necessity to not only 
control devices but also to think about viewing. 
 
In addition to demonstrating teleoperation and 
various forms of cooperation, the TCS environment 
also provides opportunities to motivate advanced 
issues in robotics. One area is the design of user 
interfaces, perhaps with joystick, spacemouse and 
other forms of input devices. Another area is the 
provision of enhanced visualisation of the task 
environment, including video overlays and task 
planning/previewing facilities, and ultimately the 
immersion of the operator within the environment 
through telepresence and augmented reality systems. 
Yet another area is the study and development of 
telerobotic control by adding local intelligence and 

seeking still greater degrees of autonomy. This in turn 
raises issues of shared control, multiple robot systems 
and human-robot systems. 
 
The development of the TCS scenario raised a 
number of issues concerned with the user interfaces, 
the scaling of the robot devices to their environment, 
and also in fact to the difficulty of the task itself if the 
arena is poorly designed. However, it also motivated 
intermediate and advanced student projects that 
extend the existing hardware and software. One key 
area for development is providing some local 
autonomy for each of the toy devices. Specifically, it 
motivated a student project, the digger intelligence 
project, that has been the focus of recent work on 
TORUS. This student project has become more 
tightly integrated with undergraduate teaching 
programmes than any of the previous projects. 
 
 
4. DIGGER INTELLIGENCE – 

AUTOMATED CONTROL 
 
A natural extension of the TCS scenario is the 
addition of some local intelligence to the devices. A 
student project was developed, therefore, whose aim 
was for the students to develop a level of autonomy 
for the devices. To complete the project the students 
would need to understand the particular task the 
device had to perform, the way in which image 
feedback and the device controls can be employed to 
interrogate the environment for task information, and 
to implement a simple stop-look-act control strategy 
that realises a solution. The project focused on the 
addition of a level of autonomy to the toy digger. 
 

 

Figure 6. Profile of the Digger 
 
The digger (Figure 6) is a tracked toy that has both 
forward, reverse and rotational motion controlled by 
the relative direction of drive to two motors 
controlling the two tracks, respectively. It has, as 
well, an arm and a bucket. Both can be moved up and 
down within certain limits. A miniature camera is 
mounted in the belly of the digger, providing a view 
of the area towards the front of the digger. The 
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digger's task can be broken out into the following six 
steps (refer to Figure 7): 
 
1. Locate the ball. This can be achieved with a 

simple scanning operation. 
2. Traverse towards the ball until it is within the 

grasp-zone.  
3. Activate the arm and bucket of the digger to 

affect a scooping motion to pick up the ball. 
4. Locate the drop-zone for the ball. This is 

another scanning operation, similar to locating 
the ball. 

5. Traverse to the drop zone. 
6. Drop the ball into the drop zone. 
 

ramps

steps

Digger drop zone Digger receiving area

Figure 7. Illustration of the digger task components 
 
The project focused on the first half of this task, 
namely picking up the ball. There are three major 
tests associated with the task, and all must be 
performed using the image data from the camera 
mounted on the digger. The first, during the localise 
stage, requires detecting the presence of the ball in 
the image. The second, during alignment, requires 
determining whether the centre of the ball is within 
some threshold distance from the centre of the image. 
The third involves determining whether the ball is in 
the grasp zone. 
 
A suite of software was developed to support the 
project. Its main components were two servers, a 
control server for controlling the digger and a video 
server for grabbing images from the camera mounted 
on the digger.  Both servers were implemented in the 
programming language C. Students provided a 
username and password to login to the servers. A 
small library and a simple client program were 
implemented in Delphi, the designated language 
(procedural) for the project. These could be 
downloaded from a web site specifically set up for 
the project. 
 
The project was set in two parts to a body of just over 
100 students attending a taught module on robotics 
and artificial intelligence. The goal of the first was to 
provide a simple interface for remote control of the 
digger. The goal of the second was to automate the 
control of the digger during the pickup task. This 
formed the major part of the overall project. Students 
were required to provide two levels of control. The 
first, manual control, as per the first part, but to 

include the ability to manually designate the centre 
and boundary of the ball in an image. The second 
level was automated control and was based on 
automatically locating the centre and the boundary of 
the ball from the image data. The students were given 
a short introduction to histogram-based image 
segmentation techniques as a suggested method for 
locating the ball. They were also required to define 
labeled buttons that initiated each element of the task 
separately, and one button that caused the sequence 
of steps to by executed automatically. The student 
were given 6 weeks in which to complete this second 
part of the project. 
 
On completion of the project the students were asked 
to provide feedback on their experience. In general, 
they found the project challenging and they felt that 
they had learned a lot from it. The fact that students 
were interacting with a “real” environment which 
provided various challenges of its own, including 
poor repeatability of the digger commands, seemed to 
be an important factor in their engagement of the 
project. The students were also relatively clear about 
the code library provided on the project web site. 
They found it both not very useful and hard to use. 
This might reflect their limited experience with 
library use and management. The student were less 
conclusive in their assessment of the accessibility of 
the servers and the quality of the documentation. 
Some felt that the queue to gain control of the digger 
was sometimes very long and the time allotted to 
each user was too long also. Analysis of logs kept 
during the project, however, showed that there was 
often no more than three users on the queue. These 
are all issues that require further study. One of the 
major improvements that was deemed useful, by both 
the students and the teachers, was better provision for 
the delivery of image grabbing functions. This 
motivated a further look at video delivery through the 
MVIDEO project. 
 
 
5. The MVIDEO Project 
 
Online robot demonstrations have shown the benefits 
of the Internet technology for education. Many of 
these demonstrations incorporate vision feedback to 
allow the user to view a mobile robot or manipulator 
arm perform some action [1]. For remote 
manipulation or guided traversal vision data provides 
a rich source of information. For automated control, 
as in the digger project, the image data needs to be 
delivered to an application where it can be 
interrogated for task-relevant information as part of a 
stop-look-act control strategy. The MVIDEO project 
aims to develop a suite of software to satisfy these 
needs. It uses a multi-port model of service delivery – 
each service type is provided at a separate port, 
eliminating in many cases the need for the client 
application to negotiate a particular service. The 
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MVIDEO software provides video streaming via 
multicast and unicast connections and includes 
support for a variety of client bandwidths. The project 
builds on and evolves software developed in a 
number of previous projects. 
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Figure 8. MVIDEO system concept 

 
The main components of the MVIDEO system are a 
capture demon, a relay server and a number of 
utilities including a Java application, JAVA applets, 
and a CGI script. The basic system concept is 
illustrated in Figure 8. The function of the capture 
demon, written in C, is is to capture video from the 
target device and to forward it to a relay server via a 
unicast connection. The relay server, written in Java, 
is the core of the MVIDEO system. It is responsible 
for sending video data to clients and multicast groups. 
It supports RAW and JPEG image formats and can 
convert between video formats. Hence, it can receive 
a JPEG stream and forward it in a number of formats. 
The relay server delivers the video stream as a 
continuous sequence of images. Users do not need to 
login to receive the images, they simply connect to 
the appropriate port on the server, or the multicast 
group, and begin receiving images. An additional 
'request-image' server is also provided aimed at 
synchronisation of control with image delivery. Users 
connect to this port and request an image of the 
required format by sending one of the strings 'jpeg' or 
'raw'. Users login to the image server was a feature 
employed in previous image delivery services used 
for student projects. It was deemed not to be a 
requirement for the MVIDEO project – the multi-port 
service aims to accommodate any custom 
requirements of a user. More services can be added 
on additional ports as required. In addition to 
supporting transmission of video, the relay server 
incorporates functionality to display statistics on the 
usage of the services via a web browser. Figure 9, for 
example, shows the basic set of statistics for the 
DiggerCam to be described shortly.  
 

 

Figure 9. Usage statistics provided by relay server 
 
The MVIDEO utilities are three in number at present. 
The first two are a Java application and a Java applet, 
and the third is a CGI script written in Perl. These 
provide basic stand-alone and in-browser viewing 
functions. The Java application shown in Figure 10 
supports multicast and unicast connections. It is 
configurable for name server, group address and port 
numbers, and allows images to be saved as RAW or 
JPEG files. It is a lightweight application that makes 
use of a set of libraries that are shared by the relay 
server and the Java applet. The Java applet runs in the 
Java 1.3.1 or later runtime environment. It is 
configurable for a splash screen test card to be shown 
when not connected to a server. It does not have 
multicast support due to the security restrictions 
placed on applets. The Java application and the applet 
together provide very useful facilities for students to 
view the digger’s environment and to download and 
save images for off-line processing and analysis. 
Finally, the CGI script is written in Perl 5. It performs 
a 1-shot-grab of a still image from a video stream. It 
is configurable for unicast connections using URL 
parameters and no multicast support is provided. 
 

 

Figure 10-a. The Java client application 
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Figure 10-b. The Java client application 
 
The MVIDEO system is replacing existing video 
services in a number of online robot scenarios we 
have developed for student projects, and is being 
employed in the development of a number of new 
online scenarios. We note first that it is currently 
being used to re-implement the TORUS TCS scenario 
[7], which depended in its initial implementation on 
server push technology for video delivery to clients. 
In this paper we focus on the application of the 
MVIDEO system to the "digger intelligence" project 
assignment. A new 'digger arena' has been developed 
to support the project, providing better control of 
lighting, camera viewing, and with scope to add more 
complex scenarios and viewing facilities (Figure 11). 
 

 

Figure 11. The new digger arena 
 
For the more recent implementation of the project the 
students were provided with two views of the 
environment from, respectively, a camera mounted on 
the digger - the DiggerCam - and a camera mounted 
overhead - the ArenaCam. Only the DiggerCam had 
been provided previously. The two views provided by 
the cameras via the MVIDEO applets are illustrated 
in Figure 12. Streaming jpeg and raw image services 

were provided, but no multicast or image grab on 
request. WWW pages were created to support the 
assignment and to allow the students to view the 
applet-based streams from a web browser, and to 
download the Java application. The basic computing 
environment comprised two Linux workstations, the 
first providing the WWW server and hosting the 
MVIDEO relay server. The second supported the 
capture demons for the two cameras. The image 
capture devices were WinTV PCI cards to which 
were connected the two miniature CMOS colour 
cameras, the DiggerCam and the ArenaCam. 
 

 

Figure 12. DiggerCam and ArenaCam views 
 
This new environment was vastly superior to the 
previous. The easy access to the two video streams 
provided via the applets was extremely useful both 
for staff and students. For the former it provided a 
means of noting that the environment was being used, 
for recognising situations where the ball might get 
stuck in a corner, or identifying if the tether became 
too tightly wound up. Additional monitoring of the 
student logins to the control server provided an 
extremely powerful but lightweight environment for 
identifying students having problems running their 
programs. From the student's perspective there were a 
number of points to note. First, the students liked the 
easy access to the applets for viewing the image 
streams, and made use of the Java application both 
for viewing and for saving images to file prior to the 
introduction of these facilities in their own programs. 
 
Second, many of the students opted to download raw 
images rather than jpeg images, and many also tended 
to read the images from the image stream a byte at a 
time. Both of these approaches slowed the 
applications significantly. This crude approach 
reflected the inexperience of the students with 
network programming and some of the lesser-known 
features of the Delphi programming environment. 
Some of these students were later able to switch to 
the jpeg image stream and take advantage of inbuilt 
facilities for displaying and manipulating jpeg 
images.  
 
Third, instead of maintaining a permanent network 
connection to the image streams, and grabbing 
images as needed, many of the students opened the 
connection, grabbed the first image on the stream, 
and then closed the connection until they needed 
another image. This again appears to reflect 
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inexperience with more advanced programming 
features. 
 
Fourth, many of the students addressed the lack of 
facilities to support synchronization between the 
digger controls and the image sequences by 
introducing a time delay into their program and 
experimenting with a sensible duration for the delay. 
This was required because of the time delay between 
the capture of an image and its arrival at the student’s 
application. This problem is addressed through the 
‘request image’ feature, which will be available in 
future projects. More advanced student projects, 
however, would also benefit from prior expore of the 
students to network programming, multi-threading 
and advanced GUI programming facilities for image 
display and manipulation. 
 
Fifth, just under about 10% of the students were able 
to get their program to complete the task 
automatically. This was a noticeable improvement on 
the previous set of students. This success is due to a 
number of factors including the benign nature of the 
environment (it was relatively easy to locate the ball), 
good reliability and fine control of the digger 
movements, and a slightly more advanced set of 
students, by one academic term, compared to the 
previous set. 
 
Finally, a small number of these students were 
encouraged to create a more permanent record of 
their success. This permanent recorded typically 
included an animated gif of the camera views during 
one of the successful sequences. 
 

 
Figure 13. A student application based on a histogram 

technique for locating the ball 
 
Figures 13 illustrates one examples of a completed 
student project. The figure shows a screen shot of the 
student’s application interface. This student took the 
suggested route of locating the ball using a simple 
histogram technique. The implementation also 
incorporated morphological pre-processing functions, 

such as erosion, to clean up the image. The range of 
functionality was impressive for this level of student. 
 
6. ASSESSMENT OF STUDENT WORK 
 
The demonstration of program code is an important 
means of assessing student projects involving 
software development. For the digger projects, both 
previous and new, students are nominally allowed 5 
minutes in which to demo their program. The demos 
are carried out in a signle PC laboratory and students 
wait their turn on a first-come first-served basis. 
Demo session for the previous project had employed 
one assessor (GTM) and a number of techniques were 
used to help them run smoothly. These involved 
observing the student's program for simple image 
download and processing to locate the ball, for 
recognising misalignment of the ball, for orientation 
of the digger relative to the ball, and finally a small 
section of the traverse towards the ball. Generally, the 
setup was such that the ball was always kept within 
the view of the camera. On completion of one demo 
the digger could be rolled back a couple of moves and 
rotated slightly so that the ball was off-centre in the 
camera view. 
 
The demos for the most recent run of the project were 
organised similarly, except for two modifications: a 
second assessor was employed and a stronger effort 
was made to observe the full task sequence, from 
scanning the horizon for the ball through to eventual 
pickup. The overall result, however, was frustration 
and disappointment from the perspective of the 
assessors and for many of the students. One of the 
main problems was coordinating the use of the robot 
environment between the two assessors. This 
included situations where the ball went out of view of 
the DiggerCam and when one demo lost control of 
the digger to the other due to timeout of their control 
session. Verbal communication (requests, queries) 
between the asssessors was the means of addressing 
these, but this only added to the frustration of 
completing the demos. In some cases it was simpler 
to go into the laboratory and manally adjust the 
digger and ball so that they were set up for the next 
demo. The coordination problem was most noticeable 
when one assesor had to leave to attend to other 
duties. The remaining portion of the demo session 
progressed more smoothly. 
 
The main conclusion one can draw is that although 
there are clear benefits of having multiple assessors 
available during the demo session, these can be 
outweighted in the case of online robot projects if the 
assessors do not have sensible coordination policy. It 
seems best to have one assessor. The question arises 
as to how to improve matters for both teachers and 
students. One option is to have multiple versions of 
the online robot system, but that defeats the purpose 
of the facility in the first place. Another option is to 
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provide more time for each demo, but that takes more 
staff resources and, even then, many of the students 
will not get their programs to complete the full task 
sequence successfully in the time alotted for their 
demo. A further option is to be minimalist in what is 
assessed, namely to assess the separate functions and 
exclude any attempt at completion of the full task 
sequence, but this approach doesn’t do justice to the 
considerable effort that students put into the 
assignment. Many students did indeed complain that 
they were not being given sufficient time to demo 
work for which they had contributed a considerable 
amount of effort. It is important, however, to view 
these problems in the context of the wider Internet 
and the opportunities it offers for distance learning. In 
this wider context demos may not need to be carried 
out in focused demo sessions, allowing participant 
more time to demonstrate the program’s 
achievements. However, there may be a much larger 
numbers of individual demos to be assessed, leading 
again to frustration and a significant assessment 
bottleneck. Another very important aspect of the 
wider Internet setting is that the assessor may be 
remote from the user performing the demo. 
 
It is possible to draw a tentative proposal for the 
assessment of student work for online robot 
environments. The proposal builds on practice that 
underpins the reporting of research at conferences and 
workshops. Namely, student should include a “record 
of experimental results” with their submission for 
assessment of the project. In general, the students 
should submit a set of four deliverables to be 
assessed: 
 
• An executable version of the program, for 

assessing the basic functionality of the 
application. 

• A permanent record, typically in the form of an 
animated gif or a movie sequence of successful 
or nearly successful task sequences. 

• A report (paper), presenting the key features and 
design components of the application. 

• Source code, primarily for the purpose of 
assessing good programming style, code layout 
and code documentation. 

 
For local assessment the demos sessions can focus on 
the basic functionality of the application. The 
students can play the permanent record, the movies 
sequences or their equivalent, as part of the demo. 
The minimal requirements placed on the online robot 
system and the lower expectations placed on the live 
portion of the demo, would mean that less 
coordination is required between the assessors and 
much of the frustration can be eliminated. 
 
Remote assessment of student work becomes a 
modification of this procedure. In this case the 
student can deposit the deliverables with the assessor 

as a zip file via email or a browser-based upload 
facility. The assessor can then run the executable to 
assess tbe basic functionality of the system and 
review the other materials for overall assessment of 
the work. Existing video conferencing tools can be 
employed at this stage to support direct interaction 
with the student and between the assessors. Some 
form of queueing mechanism may be required for 
focused demo sessions. The students can also publish 
their results, programs, report and demos on their 
home web pages, providing a visible, public record, 
of their work. If this approach is to be successful, 
however, it is important that the students are given 
guidance on how to assemble and present animated 
movies of task runs. It is important, in turn, to 
identify and develop tools that will support this 
process. These issues, and the evaluation of this 
proposal, require further study. 
 
 
7. SUMMARY AND CONCLUSIONS 
 
In summary, we have described a number of projects 
undertaken with the goals of both exploring 
networking and multimedia technology to support 
online robot educational environment and integrating 
these environments within educational programmes. 
The NETROLAB project demonstrated that it is 
feasible to create online robot facilities that can be 
shared across the Internet. The more recent TORUS 
project has focused on the tigher integration of these 
environments with educational programmes. A 
number of student projects have been developed. As 
these are refined the assessment of student project 
work involving online robot systems is also coming 
under scrutiny. Multimedia technology has a role to 
play here as well. The smooth and efficient 
assessment of student work in local and remote 
settings will benefit both the students and the 
teachers. The TORUS project will continue to 
develop this theme. 
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