

3

ONLINE ROBOT EDUCATIONAL ENVIRONMENTS

Gerard T McKee
Department of Computer Science, The University of Reading, Reading, UK

gerard.mckee@reading.ac.uk

Abstract

In this paper we review work at the University of
Reading over a number of projects exploring the use
of multimedia and networking technology to create
online-robot laboratory facilities that can be shared
across the Internet. The projects have progressed
from an emphasis on the evaluation of technology to
a closer integration and exploration of online robot
laboratories within educational programmes. The
paper emphasises recent work that highlights the role
of multimedia technology in the assessment of student
work, in contrast to its early role in the development
of the online robot facilities. Students have found the
online robot scenarios created for assessed project
work both challenging and rewarding. The
assessment of the student work, however, requires the
implementation of alternative strategies that both
allow the students to demonstrate the functionality of
their implementations and reflect the considerable
effort that many students put into their projects.

Keywords: Online robots, Internet robotics,
education, WWW.

1 INTRODUCTION

Multimedia and networking technology has played an
important role in the development and application of
robotics technology. The impact has been most
observable in providing the opportunity to create
online robot demonstrations [1-4]. These systems
have highlighted the scope for robotics education via
the Internet by providing opportunities for students
and general members of the public to control real
robots in a range of motivational scenarios. Internet
robot stores and educational robot manufacturers
have also seen the benefits of providing similar
services to illustrate their products. Some projects
have also explored the use of these environments in
student projects [5,6]. The PumaPaint project, for
example, allowed students to develop skills in
computer interface development for remote control
[6]. However, considerable work is still required to
establish a framework and a rich set of educational
facilities that can support the persistent use of these
environments in education.

In this paper we describe a set of projects developed
at the University of Reading aimed a exploiting
networking and multimedia technology to provide
laboratory facilities that can be shared across the
Internet. The early motivation for the first project,
NETROLAB, was the then recent development of
high bandwidth networks [5]. The project was
motivated internally by the desire to give many more
students access to a mobile robot system. Supervised
access was costly of staff resources. The desire for a
more efficient provision of limited laboratory
resources also reflected the more widespread need
otherwise to maintain industrial level laboratory
resources to support robotics education, a cost that
prohibited many universities providing such facilities
to support their teaching programmes.

The more recent development of the goals of the
NETROLAB projects is the smaller scale TORUS
project [7]. The focus in TORUS has shifted to using
simple toys to create small scale, but nevertheless
challenging, robot scenarios that will motivate a
range of educational topics in robotics and artificial
intelligence. A stronger focus is also placed on
integrating these scenarios into educational
programmes as assessed student projects. One such
project, described in this paper, develops the theme of
a three-player game scenario based on construction-
site toys, the TORUS Construction Site (TCS)
scenario [9]. This project has in turn motivated
further issues in the need for multimedia support for
both conducting the project and assessing the
resulting student work.

The MVIDEO software system is a more recent
project aimed at providing image services for
students who are creating simple stop-look-act
control systems spanning a remote online robot
system (the TCS arena) and the student’s local
workstation. The application of the MVIDEO system
to a recent student project has highlighted its benefits
both to the students when implementing their projects
and for the teachers when monitoring the online
environment and its use by the students. This same
application has also highlighted the need to develop
better strategies for assessing student work that
involves online robot systems. A more empirical
reporting of the results would help reduce the
overheads of assessment and better reflect the
considerable effort that many students put into the
completion of their projects.

4

The remainder of the paper is organised as follows.
The following section summarises the main
components and conclusions of the NETROLAB
project. Section 3 describes the TORUS project,
focusing on the TCS scenario. Section 4 describes a
student project developed from the TCS scenario that
focused on providing some level of automated control
for a toy digger. Section 5 describes the MVIDEO
project, whose aim was to provide image support for
both remote viewing and image processing functions.
Its incorporation in the most recent, the second, run
of the digger project is described. Section 6 discusses
the assessment of student projects that use online
robot systems. It proposes a set of deliverables that
students should provide for the assessment of this
work. This includes the developoment of a permanent
record of experimental results. In the digger project
this is best provided as an animated sequence of
images that illustrate the most successful task runs.
The provision of such a deliverable can go a long way
to easing the process of assessing the student work
and providing a better reflection of the effort the
students put into the project. Finally, section 7
provides a summary and conclusions.

2. NETROLAB

The NETROLAB project was motivated by practical
and economic problems in the delivery of robotics
education to a large body of students. Specifically,
creating a multiple-station robotics laboratory
requires significant funding which cannot be justified
in the vast majority of educational settings. If at least
one such laboratory could be established, and access
to it could be provided via the Internet, many more
students could get access to robotics systems.
NEROLAB, in short, aimed to investigate how the
combined power of high bandwidth networks and
multimedia workstation technology could be
successfully harnessed to bring otherwise
inaccessible resources to a wider audience than
hitherto possible.

Figure 1. Netrolab established a set of robotics

devices as networked resources

The practical goal of NETROLAB was the creation
of a shared robotics laboratory on the Internet by

“networking” a set of physical robotics resources,
including vision and sonar sensing modules, a
manipulator arm, and a mobile robot, housed within
an environment located at the University of Reading.
Five basic requirements were established for the
provision of such a laboratory service, namely the
coverage of the subject of robotics and the support for
individual student experiments, for group-based
experiments, for software development activities and
finally for the concurrent use of the experiment
facilities by multiple students. The conventional
model of a laboratory environment comprises a set of
resources which are configured as needed to support a
diverse range of experiments (Figure 1). A similar
model was adopted for NETROLAB. The notion was
that experimental modules could be created by
recruiting a subset of the NETROLAB resources to
satisfy the practical needs of a particular experiment
(Figure 2). In order to access these experiments
across the Internet the following additional
requirements were established:

1. The physical robotic devices require hardware

and software interfaces which are customised to
support network-based access.

2. The resources must provide a set of services that
can be used to configure a wide range of
experiments.

3. Primitive and complex resources, the latter
composed from primitive resources, need to
communicate with each other and with the user,
across the network.

Figure 2. Multiple camera resources (video streams

and pan-tilt & zoom-focus controls) could be
configured to create a viewing palette for remote

control of a manipulator.

In order to support these requirements a resource-
based client-server model was implemented
employing object-oriented techniques and
implemented in C++. In this model each resource was
implemented as a server providing a set of services to
client applications. For example, each joint of a robot

5

manipulator would be treated as a separate resource.
These could be recruited along with a video source
and a simple client interface for remote control of a
manipulator could be configured. A more complex
configuration might employ multiple cameras. The
controls for the cameras are also resources that could
be configured to create a camera control application
that could run on the same workstation or on a
separate workstation, allowing students to perform
advanced teleoperation experiments.

NETROLAB demonstrated the potential of
technology, specifically advanced networking and
multimedia technology, to create new types of
educational resources. Remote viewing and control in
various forms were demonstrated, reflecting early
Web-based online robot demonstrations and inteface-
based programming projects [2]. However, the full
benefits of these types of facilities in extended
educational programmes has still to be achieved. One
of the important requirements is to develop
technology and tools to reflect the specific
requirements of projects that involve the creation of
robot control architectures.

3. TORUS

TORUS (Toys Operated Remotely for Understanding
Science) is a project aimed at exploiting toys to create
interesting and challenging robotics demonstrations
and problem scenarios for students. The main
advantage of using toys rather than industrial-level
robot systems is the low cost of purchase and the
minimal maintenance and safety requirements. There
are also many robot-like toys available, allowing
students and other to replicate on-line scenarios, and
to develop unique scenarios of their own. The
TORUS Construction Site (TCS) scenario illustrates
the general approach incorporates three toys remotely
accessible via the Internet within the context of a
three player game (Figures 3-5).

ramps

ramps

steps

camera

camera

Arena
camera

Digger drop zone

Bulldozer drop zoneBulldozer receiving area

Digger receiving area

Bulldozer
waiting area

Figure 3. Diagrammatic overview of the TORUS
Construction Site Arena

The TCS environment comprises an arena split up
into three sections. Each section is associated with a
different toy device, namely a tower-crane, a digger

and a bulldozer respectively. The three sections of the
arena form a circuit and the task is to move a ball
around the circuit in the sequence bulldozer-
tower_crane-digger. Each player in the game has
control of one of the devices, which in turn implies
that they are taking charge of the corresponding
section of the circuit. The players have access to a
number of camera views. An arena camera located off
the arena provides a view of the whole arena. A small
camera mounted on the digger provides a view ahead
of the digger. A third camera view is provided by a
small camera mounted on the tower-crane just below
the cab so that it looks downwards and moves with
the turret. Each player can switch between any one of
these views during the game.

Figure 4. The TCS administration page. Used to

control access, set game parameters and to monitor
the arena through the tower_crane and digger

cameras.

The software environment of the TCS comprises
three basic components, namely the device servers,
the video server and the game server. All three
servers are implemented in the programming
language C running on Linux boxes that support the
corresponding device interface. Management of the
TCS game is provided by a password protected web
page based on a Perl cgi script. The administration
web page (Figure 4) allows administration and
observation of the game as it progresses. The game
server, the heart of the implementation, comprises a
number of web pages allowing users to enter and play
the game. A control page provides users with a
simulated joystick interface, a video window to
display the remote arena with a choice of three
camera views, a message window for users to
communicate with each other, a command window
that displays the commands sent to the device and the
reply, and a countdown timer which is nominally set
to 5 minutes. The tower-crane control page is
illustrated in Figure 5.

6

Figure 5. The tower_crane control page

The educational value of the TCS is in demonstrating
the concept of teleoperation through a practical
remote control scenario where optimal task
completion rate is the main performance objective.
The game demonstrates, in the first instance, the
concept of remote control. In the second instance it
demonstrates the user interfaces required for control
of the remote devices. In the third instance it
demonstrates the importance of video feedback as a
method of "seeing" the remote workspace. It
illustrates the importance of multiple camera
viewpoints and indeed the benefits of mobile camera
views over fixed cameras. The scenario chosen and
the placement of the cameras on the tower crane and
digger, for example, help illustrate the viewing
options available to human operators and the
restrictions thereof. The latter help to motivate the
need for additional support for these operators. The
tower-crane illustrates this particularly well.

The TCS also illustrates various forms of robotic
manipulation including grabbing, carrying and
pushing. Indeed, some ingenuity is required to avoid
the task (i.e. the ball) going astray; for example, if the
ball gets lodged against the sides of the arena or in a
corner. The TCS also calls on the players to think
about the task that is to be performed and the
limitations that are placed on them by remote
operations because of the necessity to not only
control devices but also to think about viewing.

In addition to demonstrating teleoperation and
various forms of cooperation, the TCS environment
also provides opportunities to motivate advanced
issues in robotics. One area is the design of user
interfaces, perhaps with joystick, spacemouse and
other forms of input devices. Another area is the
provision of enhanced visualisation of the task
environment, including video overlays and task
planning/previewing facilities, and ultimately the
immersion of the operator within the environment
through telepresence and augmented reality systems.
Yet another area is the study and development of
telerobotic control by adding local intelligence and

seeking still greater degrees of autonomy. This in turn
raises issues of shared control, multiple robot systems
and human-robot systems.

The development of the TCS scenario raised a
number of issues concerned with the user interfaces,
the scaling of the robot devices to their environment,
and also in fact to the difficulty of the task itself if the
arena is poorly designed. However, it also motivated
intermediate and advanced student projects that
extend the existing hardware and software. One key
area for development is providing some local
autonomy for each of the toy devices. Specifically, it
motivated a student project, the digger intelligence
project, that has been the focus of recent work on
TORUS. This student project has become more
tightly integrated with undergraduate teaching
programmes than any of the previous projects.

4. DIGGER INTELLIGENCE –

AUTOMATED CONTROL

A natural extension of the TCS scenario is the
addition of some local intelligence to the devices. A
student project was developed, therefore, whose aim
was for the students to develop a level of autonomy
for the devices. To complete the project the students
would need to understand the particular task the
device had to perform, the way in which image
feedback and the device controls can be employed to
interrogate the environment for task information, and
to implement a simple stop-look-act control strategy
that realises a solution. The project focused on the
addition of a level of autonomy to the toy digger.

Figure 6. Profile of the Digger

The digger (Figure 6) is a tracked toy that has both
forward, reverse and rotational motion controlled by
the relative direction of drive to two motors
controlling the two tracks, respectively. It has, as
well, an arm and a bucket. Both can be moved up and
down within certain limits. A miniature camera is
mounted in the belly of the digger, providing a view
of the area towards the front of the digger. The

7

digger's task can be broken out into the following six
steps (refer to Figure 7):

1. Locate the ball. This can be achieved with a

simple scanning operation.
2. Traverse towards the ball until it is within the

grasp-zone.
3. Activate the arm and bucket of the digger to

affect a scooping motion to pick up the ball.
4. Locate the drop-zone for the ball. This is

another scanning operation, similar to locating
the ball.

5. Traverse to the drop zone.
6. Drop the ball into the drop zone.

ramps

steps

Digger drop zone Digger receiving area

Figure 7. Illustration of the digger task components

The project focused on the first half of this task,
namely picking up the ball. There are three major
tests associated with the task, and all must be
performed using the image data from the camera
mounted on the digger. The first, during the localise
stage, requires detecting the presence of the ball in
the image. The second, during alignment, requires
determining whether the centre of the ball is within
some threshold distance from the centre of the image.
The third involves determining whether the ball is in
the grasp zone.

A suite of software was developed to support the
project. Its main components were two servers, a
control server for controlling the digger and a video
server for grabbing images from the camera mounted
on the digger. Both servers were implemented in the
programming language C. Students provided a
username and password to login to the servers. A
small library and a simple client program were
implemented in Delphi, the designated language
(procedural) for the project. These could be
downloaded from a web site specifically set up for
the project.

The project was set in two parts to a body of just over
100 students attending a taught module on robotics
and artificial intelligence. The goal of the first was to
provide a simple interface for remote control of the
digger. The goal of the second was to automate the
control of the digger during the pickup task. This
formed the major part of the overall project. Students
were required to provide two levels of control. The
first, manual control, as per the first part, but to

include the ability to manually designate the centre
and boundary of the ball in an image. The second
level was automated control and was based on
automatically locating the centre and the boundary of
the ball from the image data. The students were given
a short introduction to histogram-based image
segmentation techniques as a suggested method for
locating the ball. They were also required to define
labeled buttons that initiated each element of the task
separately, and one button that caused the sequence
of steps to by executed automatically. The student
were given 6 weeks in which to complete this second
part of the project.

On completion of the project the students were asked
to provide feedback on their experience. In general,
they found the project challenging and they felt that
they had learned a lot from it. The fact that students
were interacting with a “real” environment which
provided various challenges of its own, including
poor repeatability of the digger commands, seemed to
be an important factor in their engagement of the
project. The students were also relatively clear about
the code library provided on the project web site.
They found it both not very useful and hard to use.
This might reflect their limited experience with
library use and management. The student were less
conclusive in their assessment of the accessibility of
the servers and the quality of the documentation.
Some felt that the queue to gain control of the digger
was sometimes very long and the time allotted to
each user was too long also. Analysis of logs kept
during the project, however, showed that there was
often no more than three users on the queue. These
are all issues that require further study. One of the
major improvements that was deemed useful, by both
the students and the teachers, was better provision for
the delivery of image grabbing functions. This
motivated a further look at video delivery through the
MVIDEO project.

5. The MVIDEO Project

Online robot demonstrations have shown the benefits
of the Internet technology for education. Many of
these demonstrations incorporate vision feedback to
allow the user to view a mobile robot or manipulator
arm perform some action [1]. For remote
manipulation or guided traversal vision data provides
a rich source of information. For automated control,
as in the digger project, the image data needs to be
delivered to an application where it can be
interrogated for task-relevant information as part of a
stop-look-act control strategy. The MVIDEO project
aims to develop a suite of software to satisfy these
needs. It uses a multi-port model of service delivery –
each service type is provided at a separate port,
eliminating in many cases the need for the client
application to negotiate a particular service. The

8

MVIDEO software provides video streaming via
multicast and unicast connections and includes
support for a variety of client bandwidths. The project
builds on and evolves software developed in a
number of previous projects.

Relay
(Server)

Client
Applet(s)

Client
Application(s)

CGI
Client(s)

Multicast
 group

Relay
(Server)

Client(s)

Capture
Demon

Figure 8. MVIDEO system concept

The main components of the MVIDEO system are a
capture demon, a relay server and a number of
utilities including a Java application, JAVA applets,
and a CGI script. The basic system concept is
illustrated in Figure 8. The function of the capture
demon, written in C, is is to capture video from the
target device and to forward it to a relay server via a
unicast connection. The relay server, written in Java,
is the core of the MVIDEO system. It is responsible
for sending video data to clients and multicast groups.
It supports RAW and JPEG image formats and can
convert between video formats. Hence, it can receive
a JPEG stream and forward it in a number of formats.
The relay server delivers the video stream as a
continuous sequence of images. Users do not need to
login to receive the images, they simply connect to
the appropriate port on the server, or the multicast
group, and begin receiving images. An additional
'request-image' server is also provided aimed at
synchronisation of control with image delivery. Users
connect to this port and request an image of the
required format by sending one of the strings 'jpeg' or
'raw'. Users login to the image server was a feature
employed in previous image delivery services used
for student projects. It was deemed not to be a
requirement for the MVIDEO project – the multi-port
service aims to accommodate any custom
requirements of a user. More services can be added
on additional ports as required. In addition to
supporting transmission of video, the relay server
incorporates functionality to display statistics on the
usage of the services via a web browser. Figure 9, for
example, shows the basic set of statistics for the
DiggerCam to be described shortly.

Figure 9. Usage statistics provided by relay server

The MVIDEO utilities are three in number at present.
The first two are a Java application and a Java applet,
and the third is a CGI script written in Perl. These
provide basic stand-alone and in-browser viewing
functions. The Java application shown in Figure 10
supports multicast and unicast connections. It is
configurable for name server, group address and port
numbers, and allows images to be saved as RAW or
JPEG files. It is a lightweight application that makes
use of a set of libraries that are shared by the relay
server and the Java applet. The Java applet runs in the
Java 1.3.1 or later runtime environment. It is
configurable for a splash screen test card to be shown
when not connected to a server. It does not have
multicast support due to the security restrictions
placed on applets. The Java application and the applet
together provide very useful facilities for students to
view the digger’s environment and to download and
save images for off-line processing and analysis.
Finally, the CGI script is written in Perl 5. It performs
a 1-shot-grab of a still image from a video stream. It
is configurable for unicast connections using URL
parameters and no multicast support is provided.

Figure 10-a. The Java client application

9

Figure 10-b. The Java client application

The MVIDEO system is replacing existing video
services in a number of online robot scenarios we
have developed for student projects, and is being
employed in the development of a number of new
online scenarios. We note first that it is currently
being used to re-implement the TORUS TCS scenario
[7], which depended in its initial implementation on
server push technology for video delivery to clients.
In this paper we focus on the application of the
MVIDEO system to the "digger intelligence" project
assignment. A new 'digger arena' has been developed
to support the project, providing better control of
lighting, camera viewing, and with scope to add more
complex scenarios and viewing facilities (Figure 11).

Figure 11. The new digger arena

For the more recent implementation of the project the
students were provided with two views of the
environment from, respectively, a camera mounted on
the digger - the DiggerCam - and a camera mounted
overhead - the ArenaCam. Only the DiggerCam had
been provided previously. The two views provided by
the cameras via the MVIDEO applets are illustrated
in Figure 12. Streaming jpeg and raw image services

were provided, but no multicast or image grab on
request. WWW pages were created to support the
assignment and to allow the students to view the
applet-based streams from a web browser, and to
download the Java application. The basic computing
environment comprised two Linux workstations, the
first providing the WWW server and hosting the
MVIDEO relay server. The second supported the
capture demons for the two cameras. The image
capture devices were WinTV PCI cards to which
were connected the two miniature CMOS colour
cameras, the DiggerCam and the ArenaCam.

Figure 12. DiggerCam and ArenaCam views

This new environment was vastly superior to the
previous. The easy access to the two video streams
provided via the applets was extremely useful both
for staff and students. For the former it provided a
means of noting that the environment was being used,
for recognising situations where the ball might get
stuck in a corner, or identifying if the tether became
too tightly wound up. Additional monitoring of the
student logins to the control server provided an
extremely powerful but lightweight environment for
identifying students having problems running their
programs. From the student's perspective there were a
number of points to note. First, the students liked the
easy access to the applets for viewing the image
streams, and made use of the Java application both
for viewing and for saving images to file prior to the
introduction of these facilities in their own programs.

Second, many of the students opted to download raw
images rather than jpeg images, and many also tended
to read the images from the image stream a byte at a
time. Both of these approaches slowed the
applications significantly. This crude approach
reflected the inexperience of the students with
network programming and some of the lesser-known
features of the Delphi programming environment.
Some of these students were later able to switch to
the jpeg image stream and take advantage of inbuilt
facilities for displaying and manipulating jpeg
images.

Third, instead of maintaining a permanent network
connection to the image streams, and grabbing
images as needed, many of the students opened the
connection, grabbed the first image on the stream,
and then closed the connection until they needed
another image. This again appears to reflect

10

inexperience with more advanced programming
features.

Fourth, many of the students addressed the lack of
facilities to support synchronization between the
digger controls and the image sequences by
introducing a time delay into their program and
experimenting with a sensible duration for the delay.
This was required because of the time delay between
the capture of an image and its arrival at the student’s
application. This problem is addressed through the
‘request image’ feature, which will be available in
future projects. More advanced student projects,
however, would also benefit from prior expore of the
students to network programming, multi-threading
and advanced GUI programming facilities for image
display and manipulation.

Fifth, just under about 10% of the students were able
to get their program to complete the task
automatically. This was a noticeable improvement on
the previous set of students. This success is due to a
number of factors including the benign nature of the
environment (it was relatively easy to locate the ball),
good reliability and fine control of the digger
movements, and a slightly more advanced set of
students, by one academic term, compared to the
previous set.

Finally, a small number of these students were
encouraged to create a more permanent record of
their success. This permanent recorded typically
included an animated gif of the camera views during
one of the successful sequences.

Figure 13. A student application based on a histogram

technique for locating the ball

Figures 13 illustrates one examples of a completed
student project. The figure shows a screen shot of the
student’s application interface. This student took the
suggested route of locating the ball using a simple
histogram technique. The implementation also
incorporated morphological pre-processing functions,

such as erosion, to clean up the image. The range of
functionality was impressive for this level of student.

6. ASSESSMENT OF STUDENT WORK

The demonstration of program code is an important
means of assessing student projects involving
software development. For the digger projects, both
previous and new, students are nominally allowed 5
minutes in which to demo their program. The demos
are carried out in a signle PC laboratory and students
wait their turn on a first-come first-served basis.
Demo session for the previous project had employed
one assessor (GTM) and a number of techniques were
used to help them run smoothly. These involved
observing the student's program for simple image
download and processing to locate the ball, for
recognising misalignment of the ball, for orientation
of the digger relative to the ball, and finally a small
section of the traverse towards the ball. Generally, the
setup was such that the ball was always kept within
the view of the camera. On completion of one demo
the digger could be rolled back a couple of moves and
rotated slightly so that the ball was off-centre in the
camera view.

The demos for the most recent run of the project were
organised similarly, except for two modifications: a
second assessor was employed and a stronger effort
was made to observe the full task sequence, from
scanning the horizon for the ball through to eventual
pickup. The overall result, however, was frustration
and disappointment from the perspective of the
assessors and for many of the students. One of the
main problems was coordinating the use of the robot
environment between the two assessors. This
included situations where the ball went out of view of
the DiggerCam and when one demo lost control of
the digger to the other due to timeout of their control
session. Verbal communication (requests, queries)
between the asssessors was the means of addressing
these, but this only added to the frustration of
completing the demos. In some cases it was simpler
to go into the laboratory and manally adjust the
digger and ball so that they were set up for the next
demo. The coordination problem was most noticeable
when one assesor had to leave to attend to other
duties. The remaining portion of the demo session
progressed more smoothly.

The main conclusion one can draw is that although
there are clear benefits of having multiple assessors
available during the demo session, these can be
outweighted in the case of online robot projects if the
assessors do not have sensible coordination policy. It
seems best to have one assessor. The question arises
as to how to improve matters for both teachers and
students. One option is to have multiple versions of
the online robot system, but that defeats the purpose
of the facility in the first place. Another option is to

11

provide more time for each demo, but that takes more
staff resources and, even then, many of the students
will not get their programs to complete the full task
sequence successfully in the time alotted for their
demo. A further option is to be minimalist in what is
assessed, namely to assess the separate functions and
exclude any attempt at completion of the full task
sequence, but this approach doesn’t do justice to the
considerable effort that students put into the
assignment. Many students did indeed complain that
they were not being given sufficient time to demo
work for which they had contributed a considerable
amount of effort. It is important, however, to view
these problems in the context of the wider Internet
and the opportunities it offers for distance learning. In
this wider context demos may not need to be carried
out in focused demo sessions, allowing participant
more time to demonstrate the program’s
achievements. However, there may be a much larger
numbers of individual demos to be assessed, leading
again to frustration and a significant assessment
bottleneck. Another very important aspect of the
wider Internet setting is that the assessor may be
remote from the user performing the demo.

It is possible to draw a tentative proposal for the
assessment of student work for online robot
environments. The proposal builds on practice that
underpins the reporting of research at conferences and
workshops. Namely, student should include a “record
of experimental results” with their submission for
assessment of the project. In general, the students
should submit a set of four deliverables to be
assessed:

• An executable version of the program, for

assessing the basic functionality of the
application.

• A permanent record, typically in the form of an
animated gif or a movie sequence of successful
or nearly successful task sequences.

• A report (paper), presenting the key features and
design components of the application.

• Source code, primarily for the purpose of
assessing good programming style, code layout
and code documentation.

For local assessment the demos sessions can focus on
the basic functionality of the application. The
students can play the permanent record, the movies
sequences or their equivalent, as part of the demo.
The minimal requirements placed on the online robot
system and the lower expectations placed on the live
portion of the demo, would mean that less
coordination is required between the assessors and
much of the frustration can be eliminated.

Remote assessment of student work becomes a
modification of this procedure. In this case the
student can deposit the deliverables with the assessor

as a zip file via email or a browser-based upload
facility. The assessor can then run the executable to
assess tbe basic functionality of the system and
review the other materials for overall assessment of
the work. Existing video conferencing tools can be
employed at this stage to support direct interaction
with the student and between the assessors. Some
form of queueing mechanism may be required for
focused demo sessions. The students can also publish
their results, programs, report and demos on their
home web pages, providing a visible, public record,
of their work. If this approach is to be successful,
however, it is important that the students are given
guidance on how to assemble and present animated
movies of task runs. It is important, in turn, to
identify and develop tools that will support this
process. These issues, and the evaluation of this
proposal, require further study.

7. SUMMARY AND CONCLUSIONS

In summary, we have described a number of projects
undertaken with the goals of both exploring
networking and multimedia technology to support
online robot educational environment and integrating
these environments within educational programmes.
The NETROLAB project demonstrated that it is
feasible to create online robot facilities that can be
shared across the Internet. The more recent TORUS
project has focused on the tigher integration of these
environments with educational programmes. A
number of student projects have been developed. As
these are refined the assessment of student project
work involving online robot systems is also coming
under scrutiny. Multimedia technology has a role to
play here as well. The smooth and efficient
assessment of student work in local and remote
settings will benefit both the students and the
teachers. The TORUS project will continue to
develop this theme.

References

[1] K. Goldberg, S. Gentner, C. Sutter and

J.Wiegley, The Mercury Project: A Feasibility
Study for Internet Robots, IEEE Robotics and
Automation Magazine, Special Issue on Internet
Robotics, December 1999.

[2] J. A. Fryer, Remote-control experiment using a
networked robot, Special issue of SPIE Robotics
and Machine Perception Technical Group
Newsletter on “Networked Robotics”, Vol. 5,
No. 1, p. 12, 1996.

[3] R. G. Simmons, R. Goodwin, K. Z. Haigh, S
Koenig, J. O'Sullivan and M. M. Veloso,
Xavier, Experience with a Layered Control
Architecture, Sigart Bulletin, Vol. 8, 1997.

12

[4] R. Siegwart and P. Saucy, Interacting Mobile
Robots on the Web, Workshop on Current
Challenges in Internet Robotics, IEEE
International Conference on Robotics and
Automation, Detroit, MI, USA, 1999.

[5] G. McKee and R. Barson, Using the Internet to
Share a Robotics Laboratory, International
Journal of Engineering Education, Vol. 12, No.
2, 1996.

[6] M. R. Stein and K. Sutherland, Project Update:
Sharing resources over the Internet for robotics
education, SPIE Proceedings Vol. 3524,
Telemanipulation and Telepresence V, pp. 180-
188, 1998.

[7] G. T. McKee and K. Phillips, TORUS: Toys
operated remotely for understanding science,
SPIE Proceeding Vol. 4195, Mobile Robots XV
and Telemanipulator and Telepresence
Technologies VII, 9pages, Nov. 2000.

[8] G T McKee & R M Maunders, Exploiting Toys
and the Internet for Robotics Education, WSES
International Conference on Robotics, Distance
Learning and Intelligent Communication
Systems (RODLICS 2001), Malta, October
2001. Published in Advances in Signal
Processing and Communicationis, V.V.Kluev &
N.E. Mastorakis (Eds), 2001, pp. 281-286.

[9] G T McKee, The Development of Internet-
Based Laboratory Environments For Teaching

Robotics and Artificial Intelligence, Proceedings of
ICRA 2002, Washington, USA, 2002.

